225 research outputs found

    Reconstructing past atmospheric circulation changes using oxygen isotopes in lake sediments from Sweden

    Get PDF
    Here we use lake sediment studies from Sweden to illustrate how Holocene-aged oxygen isotope records from lakes located in different hydrological settings, can provide information about climate change. In particular changes in precipitation, atmospheric circulation and water balance. We highlight the importance of understanding the present lake hydrology, and the relationship between climate variables and the oxygen isotopic composition of precipitation (18Op) and lake waters (18Olakewater) for interpretation of the oxygen isotopic record from the sediments (18O). Both precipitation reconstructions from northern Sweden and water balance reconstructions from south and central Sweden show that the atmospheric circulation changed from zonal to a more meridional airflow over the Holocene. Superimposed on this Holocene trend are δ18Op minima resembling intervals of the negative phase of the North Atlantic Oscillation (NAO), thus suggesting that the climate of Northern Europe is strongly influenced by atmospheric and oceanic circulation changes over the North Atlantic

    Do fluid inclusions preserve δ18O values of hydrothermal fluids in epithermal systems over geological time? : evidence from paleo- and modern geothermal systems, Milos island, Aegean Sea

    Get PDF
    Stable isotope compositions of quartz (δ18Oquartz) and fluid inclusion waters (δ18OFI and δDFI) were analysed from Profitis Ilias, a low-sulphidation epithermal gold mineralisation deposit on Milos island Greece, to establish if δ18OFI preserve a record of paleo-geothermal processes. Previous studies show that mineralisation at Profitis Ilias resulted from extreme boiling and vaporisation and a zone located at approximately 430 m asl represents the transition between a liquid- and vapour-dominated system [Mineral. Dep. 36 (2001) 43]. The deposit is also closely associated with an active geothermal system, whose waters have a well-characterised stable isotope geochemistry [Pagel and Leroy (1991) Source, transport and deposition of metals. Balkema, Rotterdam, 107–112]. The samples were collected over an elevation interval of 440 m (210 to 650 m asl) to give information on the liquid- and vapour-segments of the paleo-system. The data show systematic variations with sample elevation. Samples from the highest elevations (c. 650 m asl) have the lightest δ18OFI (–7.3 ‰) and δDFI (–68.0 ‰) whilst the deepest (c. 210 m asl) are isotopically heavier (δ18OFI –3.7 ‰; δDFI –19.0 ‰). Relative changes in δ18OFI closely parallel those in δDFI. δ18Oquartz shows an opposite trend, from the lightest values (+13.9 ‰) at the lowest elevations to the heaviest (+15.1 ‰) at the highest. δ18OFI show correlations with other parameters. For example, variable fluid inclusion homogenisation temperatures in the vapour-dominated part of the system, correlate with a rapid shift in δDFI (–33.3 to –50.5 ‰) and δ18OFI (–4.1 to –6.2 ‰) and gold contents also increase in the same zone (up to 50 ppm). Comparable correlations in δ18Oquartz or δ18Ocalculated (estimated geothermal fluid from fluid inclusion homogenisation data) are absent. δ18Ocalculated are always 5 to 10 ‰ heavier than δ18OFI. Comparison with the modern geothermal system shows that δDFI–δ18OFI are similar. Isotope data for the modern system and fluid inclusion waters fall on linear trends sub-paralleling the meteoric water line and project towards seawater values. Numerical modelling favours kinetically controlled fractionation to explain differences in δ18Ocalculated and δ18Ofluid rather than diffusive post-trapping equilibration. The evidence suggests, that in low-temperature epithermal systems, δ18OFI may represent a better record of fluid process and the isotopic composition of the geothermal fluid than temperature-corrected quartz data

    Geochemistry, and carbon, oxygen and strontium isotope composition of brachiopods from the Khuff Formation of Oman and Saudi Arabia GeoArabia

    Get PDF
    Brachiopods are abundant in the Oman Khuff Formation and similar brachiopod faunas are present at a few horizons in the same formation in Central Saudi Arabia. Following extensive systematic and biostratigraphic studies of these faunas, specimens from the base of the Midhnab Member of the Khuff Formation of Saudi Arabia (Buraydah Quadrangle), and from Member 3 of the Khuff Formation of the Huqf outcrop of Oman were assessed for isotope geochemistry (Sr, O and C). Dating using 87Sr/86Sr alone is not conclusive. Five pristine Oman brachiopods from biostratigraphically well-constrained lower Wordian horizons record a range of 87Sr/86Sr values that form a separate cluster offset from the current Sr isotope seawater curve, which defines the Early Permian and earliest Mid-Permian. The 87Sr/86Sr of the pristine Saudi Arabian brachiopod sits in an area which corresponds to a wide scatter of 87Sr/86Sr in the seawater curve data. However, the Saudi Arabian data does indicate that the Midhnab Member is likely younger than Member 3 of the Khuff Formation of the Huqf outcrop. The well-preserved brachiopod carbonate allows deductions to be made about the palaeotemperature of the Oman Khuff Formation Member 3 seawater using its oxygen isotope composition (\u3b418O). Assuming \u3b418O of seawater < \u20130.5\u2030, then palaeotemperature derived from brachiopods in the Oman horizons would be +25\ub0C, +22\ub0C and +17\ub0C respectively. This is consistent with the trend of shallowing within Member 3, suggested by facie

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep, and oligotrophic Lake Ohrid (Macedonia/Albania)

    Get PDF
    Lake Ohrid (Macedonia/Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the first high-resolution diatom analysis during the Lateglacial and Holocene in Lake Ohrid. It demonstrates a complex diatom response to temperature change, with a direct response to temperature-induced productivity and an indirect response to temperature-related stratification/mixing regime and epilimnetic nutrient availability. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low temperature-dependent lake productivity. During the earliest Holocene (ca. 11 800–10 600 cal yr BP), although the slight increase in small, epilimnetic C. minuscula suggests climate warming and enhanced thermal stratification, diatom concentration remains very low as during the Lateglacial, indicating that temperature increase was muted. The early Holocene (ca. 10 600–8200 cal yr BP) marked a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high temperature-induced lake productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP, and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the mid Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for high temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from mesotrophic Stephanodiscus transylvanicus indicative of high temperature-induced productivity in the hypolimnion. During the late Holocene (ca. 2600–0 cal yr BP), high abundance and fluctuating composition of epilimnetic taxa is largely a response to enhanced anthropogenic nutrient input. In this deep, oligotrophic lake, this study demonstrates the strong influence of lake physical and chemical processes in mediating the complex response of diatoms to climate change with particular respect to temperature

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)

    Get PDF
    Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperature-related lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800–10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600–8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the middle Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP–present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence

    Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef.

    Get PDF
    We present measurements of Sr/Ca, d18O, and spectral luminescence ratios (G/B) from a mid-Holocene Porites sp. microatoll recovered from the nearshore Great Barrier Reef (GBR). These records were used as proxies to reconstruct sea surface temperature (SST), the d18O of surrounding seawater (d18Osw), and riverine influence, respectively, and compared with records from a modern Porites sp. microatoll growing in the same environment. Strong riverine influence in the mid-Holocene record is indicated by (1) an increased annual d18Osw range in the mid-Holocene record, (2) negative peaks in d18O characteristic of flood events, and (3) a higher G/B luminescence ratio. Seasonal cycles in G/B suggest that humic acid inputs were elevated for a longer portion of the year during the mid-Holocene. The seasonal cycle of d18Osw peaked earlier in the year in the mid-Holocene record relative to the modern, while mean d18Osw values from the mid-Holocene record were similar to modern values. These records provide an insight into the oceanographic conditions the nearshore GBR experienced during mid-Holocene climatic shifts and are consistent with a strong Australian–Indonesian Summer Monsoon (AISM) system at ~ 4700 cal. yr BP

    Stable isotopes in biological and chemical fossils from lake sediments: developing and calibrating palaeoenvironmental proxies

    Get PDF
    Stable isotope records of H, C, N, O, and Si derived from lake sediments provide valuable information about changing environmental conditions, with diverse applications in Quaternary research. A key issue with the interpretation of stable isotope data is understanding the hydrological, ecological, metabolic, and taphonomic processes that affect stable isotope values measured on individual taxa and specific compounds. In order to provide a better overview of these processes, we brought together specialists in stable isotope biogeochemistry working on lake sediment records during a workshop in Southampton in July 2016. Articles in this special issue provide an overview of the data presented during the workshop as well as the outcome of group discussions. The aim of this special issue is to improve the accuracy, robustness and reliability of interpretations of palaeolimnological stable isotope records, hence there is a focus on modern monitoring, calibration, and experimental studies to understand spatial and temporal variability and taphonomic processes. Studies that provide detailed comparisons with other proxies to constrain the interpretations of stable isotope data are also included

    Stable isotope signatures reveal small-scale spatial separation in populations of European sea bass

    Get PDF
    Scientific information about European sea bass (Dicentrarchus labrax) stocks in NE Atlantic is limited and a more accurate definition of the stock boundaries in the area is required to improve assessment and management advice. Here we study the connectivity and movement patterns of European sea bass in Wales (UK) using the stable isotope (δ13C and δ15N) composition of their scales. Analysis of fish scale δ13C and δ15N values in the last growing season was performed on 189 adult sea bass caught at nine coastal feeding grounds. Fish >50 cm total length (TL) caught in estuaries had very low δ13C and this is characteristic of fresh water (organic/soil) input, indicating the primary use of estuaries as feeding areas. A random forest classification model was used to test if there was a difference in δ15N and δ13C values between north, mid and south Wales and whether it was possible to correctly assign the fish to the area where it was caught. This analysis was restricted to fish of a similar size range (40-50 cm TL) caught in open coastal areas (n=156). The random forest classification model showed that about 75% of the fish could be correctly assigned to their collection region based on their isotope composition. The majority of the misclassifications of fish were fish from north Wales classifying to mid Wales and vice versa, while the majority of fish from south Wales were correctly assigned (80%). Our findings suggest that two sub-populations of sea bass in Welsh waters use separate feeding grounds (south vs. mid/north Wales), and may need separate management

    Mediterranean climate since the Middle Pleistocene: a 640 ka stable isotope record from Lake Ohrid (Albania/Macedonia)

    Get PDF
    Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within the lake

    Improving the routine analysis of siderite for δ 13 C and δ 18 O in environmental change research

    Get PDF
    Rationale The carbon (δ13C) and oxygen (δ18O) isotope composition of siderite (FeCO3) is used widely to understand and quantify geochemical processes in order to reconstruct past climate and environmental change. However, few laboratories follow precisely the same protocol for the preparation and analysis of siderite-bearing materials, which combined with the absence of international reference materials and mineral-specific acid fractionation factors, leads potentially to significant differences in isotope data generated by individual laboratories. Here we examine procedures for the isotope analysis of siderite and discuss factors potentially contributing to inconsistencies in sample measurement data. Methods Isotope analysis of siderite is first assessed using similar versions of the classical off-line, sealed vessel acid digestion method by comparing data sets obtained from intercomparison materials measured at two participating laboratories. We then compare data from the classical method against those generated using an automated preparation technique using data produced from an independent set of test materials. Results Measurement of siderite δ13C is generally both repeatable and reproducible, but measurement of δ18O may be subject to large (~1 ‰), method-dependent bias for siderite reacted at differing temperatures (70 °C and 100 °C) under classical and automated CO2 preparation conditions. The potential for poor oxygen isotope measurement reproducibility is amplified by local differences in sample preparation protocols and procedures used to calibrate measurement data to international reference scales. Conclusions We offer suggestions for improving the repeatability and reproducibility of δ13C and δ18O analysis on siderite. The challenge of producing consistent isotope data from siderite can only be resolved by ensuring the availability of siderite reference materials to facilitate identical treatment as a basis for minimising method-dependent contributions to data inconsistency between laboratories
    • …
    corecore